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Assuming that an original distribution is a probabilistic measure
and the Laplace transforms are known only for a finite number of
points that are affected by errors, we develop a method for recon-
structing weak-sense mean values obtained by integrating smooth
functions with the measure. Our method is useful in NMR if the
NMR signal can be represented as a superposition of exponential
terms. In these circumstances, we show how the data processing
can be related to the classical Hausdorf momentum problem. First,
we clarify the meaning of stable spectrum reconstruction, and then
develop stable filtering and a mean value reconstruction algo-
rithm. Our method has been tested on both simulated and real sets
of spin–spin relaxation curves with noise. In view of this, our
method could provide an efficient and accurate reconstruction of
spin–spin relaxation data. For any reader interested in applica-
tions, a “practical recipe” that is almost self-consistent has been
included. © 2000 Academic Press

Key Words: time domain; NMR; relaxation; classical momen-
tum problem; numerical Laplace transform inversion.

I. INTRODUCTION

In the interpretation of the spin–spin relaxation data, the
temptation is to invert the Laplace transform, in orde
recover population densities and relaxation times. An al
similar mathematical problem was treated extensively in1),
where the difficulties related to the numerical inversion of
Laplace transform are solved in the special case of a kn
upper bound on the number of populations (exponential te
In most situations, the restrictions imposed in (1) are no
satisfied (there is no upper bound on the number of po
tions, and, moreover, there can be an infinity of them). In
work, we solve such a generalized reconstruction problem
final recipe is given in Section VII.

In most previous works the computation of NMR para
ters, such as relaxation times and populations, is stro
dependent on the particular details of the reconstruction
rithm; in other words, the reconstruction is unstable.
In this paper we suppose that the dependence on time of
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NMR ideal noiseless signals(t) for T (spin–spin relaxatio
time) may be represented as (2)

s~t! 5 O
i51

N

niexp~2t/Ti!, ni $ 0, O
i51

N

ni 5 1, Ti . 0, [1a]

whereni andTi are the populations and the relaxation tim
respectively.

Due to lack of information onni and Ti , we are forced t
consider the more general representation

s~t! 5 E
Tmin

Tmax

exp~2t/t!dr~t!

5 O
i51

N

niexp~2t/Ti! 1 E
Tmin

Tmax

exp~2t/t!w~t!dt. [1b]

In Eq. [1b] r(t) is a Borel measurable nondecreasing func
whose continuous part ofw(t) is associated with a continuo
relaxation time spectrum, typical in nonhomogeneous disp
or multiphase media, and the jump points ofr(t), (Ti), cor-
respond to the discrete spectrum. We denote byTmin andTmax

the known bounds on relaxation times, obtained from o
experiments or theoretical models. The simplest, but n¨ve,
question that one may raise is how to compute the popula
ni and the relaxation timesTi , or, more generally, the dist-

ution functionr(t) from the sequence of samples affected
errors (s9k 5 s(kDt) 1 Dsk, whereDsk is the experimenta
error). As explained in Section III, the direct reconstructio
the populationsni and the relaxation timesTi is impossible i
N from Eq. [1a] is not known, because of the mathema
instability of the problem itself, even in the idealized noise
case, whens(t) is known in a finite number of points. Neve
theless, as we show in Section II, we could compute s

Tmax
themean values, of the form*Tmin f(t)dr(t), for some especially
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322 STEINBRECHER ET AL.
selectedf(t), directly froms(t), without computingni , Ti , or
dr(t), shortcutting the reconstruction instability of the m
suredr(t) (or ni andTi).

In Section II we expose a simple and stable method
ould be applied directly to extract some global information
i and Ti , without sharp localization ofTi . This result is th

starting point, which justifies a more rigorous treatment.
In Section III we expose the connection to the class

momentum problem (3, 4) and describe the filtering algorith
f the noise-perturbed data.
In Section IV we generalize and clarify the results from S

ions II and III by solving the reconstruction problem from no
9k for the mean values*Tmin

Tmax f(t)dr(t), if f(t) is a smooth and
least continuously differentiable on theTmin # t # Tmax function.

In Sections V and VI we apply the mathematical method f
Section IV to a series of simulated and experimental signal

In the followings we considerTmin orTmax to be known, 0# Tmin

, Tmax # `. In case we have no extra information (which co
increase effectiveness), even in the extreme cases of la
information (Tmin 5 0 and/orTmax 5 `), our results are still valid

Without any loss of generality, we can considers(t) normalized
ass(0) 5 1, or*Tmin

Tmax dr(t) 5 1; i.e.,dr is a probabilistic measur
respectively,¥i51

N ni 5 1, for discrete distribution andni can be
interpreted in probabilistic framework.

The case whereN from Eq. [1a] is known can be found
1), so this can be considered a solved problem, at least

N is not too large.
Thus, the essential point is the following (perhaps a

deceptive) statement: the reconstruction ofTi andni from Eq.
[1a] or r(t) (w(t)) from Eq. [1b] is impossible, but we c
reconstruct a “smeared out” or “convoluted” distributi
which could give some “fuzzy” information on the relaxat
times and populations. The basic argument for the impos
ity of direct reconstruction is the intrinsic mathematical in
bility, a consequence of the nonuniqueness of the finite-
classical momentum problem. This does not mean tha
reconstruction in TD low-resolution NMR should be ab
doned. Though at different scales, we can compare this
tion with the impossibility of long-term prediction in unsta
chaotic deterministic systems (fluid dynamics, meteorol
and celestial mechanics) or classical statistical physics
molecular dynamics where, although the trajectories of m
cules depend sensitively on initial conditions, the macrosc
observables can be computed in a safe manner, as mean
of microscopic quantities.

II. DIRECT RECONSTRUCTION OF MEAN VALUES
(WITHOUT NONLINEAR FILTERING)

All of these calculations can be performed easily on a s
programmable pocket calculator in an extremely stable
ner. For readers interested in applications using a powerfu
this part may be skipped.
Despite the fact that filtering increases efficiency, there is
-
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simple quick algorithm (without filtering) for some mean va
computations, which can be implemented in stable form
mean valueŝTa& can be computed from the identity

^Ta& 5
DefE

Tmin

Tmax

Tadr~T! 5
1

G~a! E
0

`

t a21s~t!dt, [2]

r ^Ta& 5 ¥ i51
N Ti

ani , for discrete distributions. For simplicit
we prove Eq. [2] in the case: using Eq. [1a], we obtain

E
0

`

s~t!t a21dt 5 E
0

` O
i51

N

exp~2t/Ti!t
a21nidt

5 O
i51

N

ni E
0

`

exp~2t/Ti!t
a21dt.

The integrals can be reduced to the Euler gamma functionG(a) 5

0
` exp(2y)ya21dy by substitutiony 5 t/Ti. a is a complex

number, with Re(a) . 0, but not too large. Then Eq. [2] follow
mmediately from Eq. [1b] and the definition of^Ta&.

Let us suppose that: (a) we have a good numerical int
lation of s(kDt) ' s(t) necessary for numerical integratio
and (b) there is an upper cutoffL, such that we could appro
imate the integrals

E
0

`

s~t!~. . .!dt < E
0

L

s~t!~. . .!dt [3]

L is less or equal to the measuring time).
In Eq. [2] we have two kinds of numerical instabilities
e(a) , 1, the instabilities that appear att ' 0 and, if a is

large, the incertitude in Eq. [3] at larget.
A good choice appears to bea 5 1, when we obtain

^T& 5 E
0

`

s~t!dt > E
0

L

s~t!dt

~the arithmetic mean value of relaxation time!,

hich was used in (5, 6).
BecauseG(n) 5 (n 2 1)!(n [ Z1), we can compute

^T2& 5 E
0

`

t z s~t!dt, ^T3& 5
1

2 E
0

`

t 2s~t!dt,

^T4& 5
1

3! E `

t 3s~t!dt,

a 0
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323STABLE T2 RECONSTRUCTION
which gives

s 2 5 ~^T2& 2 ^T& 2! ~the dispersion!,

as 5
^T 2 ^T&& 3

s 3 ~the asymmetry!,

k 5
^T 2 ^T&& 4

3s 4 ~the kurtosis!.

e can compute also the displaced byT0 “harmonic mea
value,” Th,

K 1

t 1 T0
L 5

DefE
Tmin

Tmax ds~t!

t 1 T0
5
Def 1

Th 1 T0
,

using Eq. [A1] and its dispersion (see Appendix A).
The drawback of these methods is the following: (a) c

putation of higher momentŝT2&, ^T3&, and ^T4& can be
trongly affected by errors ofs(t) for larget; (b) the harmoni

mean values are insensitive on the largeT components o
ds(t); (c) even in small error cases, we do not obtain local
information.

III. CONNECTION TO THE CLASSICAL MOMENTUM
PROBLEM AND NONLINEAR FILTERING OF DATA

III.1. Existence of Representation [1b] and
Necessity of Filtering

The noiseless part of the signal sequence

sk 5 s~k z Dt! 5 E
Tmin

Tmax

exp~2kDt/t!dr~t!,

dr~t! $ 0, k 5 0, M, [4a]

y substitutionx 5 exp(2kDt/t), s(e2Dt/t) 5 r(t), can be
rewritten as

sk 5 E
a

b

xkds~ x!, k 5 0, M, ds~ x! $ 0, [4b]

here

a 5 exp~2Dt/Tmin!, b 5 exp~2Dt/Tmax!, 0 # a , b # 1.

[4c]

he unphysical variablex will be important in the following
elating our NMR problem to a standard mathematical one.

tudy of the properties ofds(x), starting from Eq. [4b] is a
-

d

e

classical, but still actual problem of functional analysis (3, 4, 7).
For M 5 2, this problem has a clean mechanical interpreta
Let an inhomogeneous rod, with constant cross section plac
0x axis, be betweena andb, and lets(x) the (unknown) total mas
be betweena andx. Thens0, s1, s2 are the total mass, baricen
and inertia moment. Then our problem is to find as muc
information about mass distributions(x), knowing onlys0, s1, s2.
When M 5 `, Eq. [4] is known as the Hausdorf moment
problem, while forM finite this is the Markov or incomple

ausdorf momentum problem. The incomplete Hausdorf mo
um problem is related to the problem of extrapolation for ana
unctions (7). The general aspects of stability questions in nu
cal computations, with applications to the scattering theor
lementary particles, were treated in (8, 9). An adaptation of
eneralized Markov momentum problem to lattice gauge th
omputation was proposed in (10) and in the quantum few-bod
roblem, in (11).
Contrary to intuition, the conditionsni $ 0 from Eq. [1a] o

ds( x) $ 0 from Eq. [4b] give rise to very strong restrictio
whenM is large, given by the following Proposition 1 (7). For
reader’s convenience we anticipate that these conditio
experimental situations are never fulfilled. Nevertheless,
issue is conceptually influencing the present work.

PROPOSITION 1. The restrictions onsk. The representatio
[4] of sk as moments of a positive measure stands if and
if the following quadratic formsQ1 and Q2 are nonnegativ
(we will abbreviate these restrictions by (R)).

(a) M: even. We definesk
(1) 5 2sk12 1 (a1 b)sk11 2 ab sk, k5

0, M 2 2, thenQ1 5 ¥m,n50
M22 sm1n

(1) z#mzn andQ2 5 ¥m,n50
M sm1nz#mzn.

(b) M: odd.sk
(2) 5 b z sk 2 sk11, k 5 0, M 2 1. sk

(3) 5 sk11 2 a z
sk, k 5 0,M 2 1, thenQ1 5 ¥m,n50

M21 sm1n
(2) z#mzn, Q2 5 ¥m,n50

M21 sm1n
(3) z#mzn.

We emphasize that the necessity of these conditions fo
[1b] is elementary to check. Sufficiency is more difficult. In
NMR terminology, for the noiseless, ideal signal samp
representations(kDt) 5 ¥ i51

N niexp(2kDt/Ti) (or more gen-
erally Eq. [4a]) is possible, withni $ 0, Tmin , Ti # Tmax if
and only if the restrictions (R) are fulfilled, witha andb given
by Eq. [4c]. If (R) are fulfilled, we could use the who
collection of analytical methods (7). We denote byKM the se
of all vectors {sk} 1

M [ RM, which satisfies (R) ands0 5 1, i.e.,
the set of all ideal normalized signal samples. ClearlyKM is a
closed bounded convex subset ofRM. For convexity remark
see below.

At first sight we can expect that if experimental error wo
be small, the above conditions should be fulfilled and we c
use the whole classical theory and use (R) to reject some dat
The numerical tests and analytical results (explained in
pendix B) show the probability that the error-affected sig
s9k 5 s(kDt) 1 Dsk fulfills (R) is very small, and ifM $ 5 it
should be meaningless to test. If we use (R) to reject some dat
all of them will be rejected.
This is a very important fact, mainly for readers who will be
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324 STEINBRECHER ET AL.
tempted to learn unnecssary topics on classical mome
problem, for further developments. In order to prove the a
statement, we use in Appendix B the elegant result of K
and Shapley (17). Translated in NMR terminology, they in fa
hopefully computed the probability that a sequence of s
samples 0# sk # 1 taken randomly and independently,
uniformly distributed on [0, 1], could be written as Eq. [1a
Eq. [1b], i.e., to be an ideal, noiseless true physical NMR s
(for details see Appendix B), although in theirs paper (17) there
s no reference to NMR and probabilities.

Therefore, if M $ 5, the test of positivity conditions
eaningless because it is too restrictive and practically n

ulfilled. In order to work in a mathematically correct conte
e must replace the experiment sequences9k by another se-

quence, which (a) satisfies (R), and (b) approximatess9k opti-
ally. The convexity of the setKM is an important fact. Simila

to, e.g., 2- and 3-dimensional cases, the closest point fromKM

to a point outside of this set is always on the boundary.
because the interior points in Eq. [1b] are those withni . 0,
he boundary points will be ofni 5 0 (in fact, in many of th
practical applications, only few (,10) are nonzero).

III.2. The Filtering

Next we cope with the following problem: Find the b
approximation of the perturbed-by-noise datas9k by some
{ sk} [ KM, i.e., by some ideal, normalized signal sequenc
the noise is not correlated, stationary, and additive, the
rigorous meaning would be to find the sequence {sk} [ KM

that realizes the optimal approximation to {s9k},

u 5 inf
$sk%[KM

dist
M

~$sk%, $s9k%!, [5]

here

dist
M

~$sk%, $s9k%! 5 F 1

M O
k51

M

~sk 2 s9k!
2 z wkG 1/ 2

,

here, in our case, the weights (wk) were equal and no-
malized to 1.

By standard convexity and compactness arguments i
lows that (see Ref. (10)) the infimum (a) is attained, (b)
unique, and (c) is just on the boundary of the convex bodyKM,
.e., 2N , M 1 1, for M-odd (7), and (d) by filtering, the erro
does not increase. All of these statements can be illust
geometrically in particular cases, whenM 5 2, 3, 4.

For numerical convenience our filtering problem may
approximated by the following discretized version (see Ap

dix C for the discretization error bound):
m
e

in

al
l

al

er
,

ut

t
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he

l-

ed

e
-

sk > O
a51

N

j a
kra,

inf
ra[SN

~O
k50

M

~s9k 2 O
a51

N

j a
kra! 2! 5 Md 2, [6]

where d is the least-square deviation,j a [ [a, b] are the
discretization points, andSN is the N-dimensional standa
simplex, i.e.,

SN 5 $$ra%ura $ 0; O
a51

N

ra 5 1%.

SN , RN, with N large enough (e.g., forN 5 3, SN is the
triangle whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1)). Thr a,
a 5 1, N are the reconstructed, approximated populatio

The optimization algorithm used by the authors is the
slight modification of the Fletcher–Reeves (FR) conjugate
dient method, because the optimization may proceed eith
interior (ra . 0) or on the “faces” (severalra 5 0) of the
simplex SN, which are lower dimensional (12). In the latte
cases, we applied the conjugated gradient method, restric
corresponding “faces,” until the boundary (i.e., a newra van-
ishing) is attained. Then the FR algorithm is restarted a
new face, with new free variables. The procedure ends a
finite number of steps, exactly in the interior point of a face
on a vertex), i.e., much ofra are zero (only onera is nonzero
i.e., a single exponential representation).

As a stop criterion, the condition may be chosen that
Fletcher–Reeves iteration should not attain to the boundary
given face of the simplex. In our examples, usually this pa
optimization ended at a face ofSN with very low dimension
(#6), depending on the true spectrum of the signal and the

At this stage the CONTIN package (13) could be use
nstead of the previous optimization algorithm, with the p
ivity condition imposed, without regularization.

After computing the infimum from Eq. [6], we obtain
epresentation of the form as that in Eq. [1a],

sk 5 O
a51

N

raj a
k , k 5 0, M, [7]

with ra $ 0.
Remember a fundamental result from (7): Every sequenc

from Eqs. [1a] and [1b] (or equivalently), that satisfies
positivity conditions (R) could be represented as Eq. [7] in
infinity of manners if 2N . M 1 1. Moreover, at least one
ja may be placed everywhere, on [a, b]. In Eq. [7] we have a

least a free parameter and the corresponding quadratic forms
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325STABLE T2 RECONSTRUCTION
are strictly positive. In our case, the sequence is on the bo
ary, and we can proceed on a further optimization, by refi
the discretization set {ja} in [ a, b] and keepingra $ 0, having
as inputs the values obtained from stage 1.

III.3. The Reconstruction of the Original Signal

If we performedP measurements under the same phy
onditions and filtered each of the signal sequences, the
here be {sk

(!) }, . . . , { sk
(p)}, k 5 0, M, the collection of signa

sequences, with the associated weightswa . 0, ¥ a51
P wa 5 1.

enote by

sk
~a! 5 O

a51

P

r a
~a!j a

k , k 5 0, M, a 5 1, P [8]

the representations after filtering, which are unique as we s
previously.This uniqueness gives the false impression of co
and stable reconstruction.Because, as we have seen, the filt
signal is always on the boundary ofKM, irrespective of th
spectrum of unperturbed, ideal, true, noiseless signal, the fi
signals separately cannot reproduce the correct behavior b
the true, noiseless signal most probably is in the interior ofKM.

On general grounds, the convex (weighted) mean

sk,w 5 O
a51

P

sk
~a!wa [9a]

of the signal, or

ra 5 O
n51

P

r a
~a!wa, [9b]

for large P must be used, instead of separate representa
given by Eq. [8].

The choice of the weight in Eq. [9a] depends only
experimental conditions. We usedwa 5 1/P. When P is
sufficiently large, the computed sequence {sk,w} will be an
interior point of the set of all physically admissible sequen
(i.e., allra . 0), and at least in this respect more resemblin
an unperturbed, original signal sequence, in the generic

IV. RECONSTRUCTION OF MEAN VALUES

As we stated in Section III.2, if the signal should satisfy
positivity conditions and if we should have no precise in
mation on the number of terms in Eq. [1a], or worse, if
should have continuous components (as in Eq. [1b]), th
construction could not be performed unambiguously. In
followings we attack the reconstruction problem with m
precautions; i.e., we do not suppose any extra constrain

ds( x) (or dr(t)), with the exception of Eqs. [4] andds( x) $
d-
g

al
let

ted
ct
d

ed
use

ns

s
o
se.

e
-

e-
e

on

0 ordr(t) $ 0. Next we discuss the stability of reconstruct
of mean values, which generalizes those treated in Secti
Define the mean value of the functionf( x) as

I ~ f, s! 5
DefE

a

b

f~ x!ds~ x! 5 E
Tmin

Tmax

f~exp~2Dt/t!!dr~t!,

[10]

heref is at least a continuous function.
The word “stability” will be defined now.

V.1. Mathematical Stability (Idealized Case)

Let us suppose thatsk (k 5 0, M) satisfies the positivit
conditions and is exact (i.e., no measuring error appear
this case, we are interested only in the estimation error oI ( f,
s) from Eq. [10], due to the finite amount of information onsk

(k 5 0, M), whenM is finite. In Appendix D we used the fa
that if f( x) is continuous, the error due to nonunique rec
truction of relaxation time distribution should decrease to
3 `. This is a well-understood mathematical result, bu

nsert it here for the nonmathematician reader’s convenie
his is the meaning of “mathematical” or “idealized” stabil
ven whenf( x) is not continuous, we could also prove

stability under several restrictions, but we did not make us
this possibility.

IV.2. Experimental Stability (Real Case)

The problem is that many test functionsf(x) of high interest
namely those which are strongly peaked in the neighborho
some points and take small values away, i.e., those which
give us localized information, despite the approximations by p
nomials (from Appendix D), give rise to an error termRM(x), with

RM~ x! 5 f~ x! 2 O
k50

M

pkx
k. [11]

With RM( x) very small on [a, b], the coefficientspk might be
very large numbers, which is a well-known fact in numer
analysis. The previous approximation (see Appendix D
realistic cases whens9k 5 sk 1 Dsk,

I ~ f, s! 5 E
a

b

f~ x!ds~ x! 5 O
k50

M

pks9k 1 E
a

b

RM~ x!ds~ x!,

[12]

ontains in fact a new error term¥ pk z Dsk, when sk are
affected by errors. At least to our knowledge, this problem

not treated.
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326 STEINBRECHER ET AL.
The elucidation of this mathematical problem is given
Appendix E.

IV.3. Practical Method for Error Estimation

Next we expose a practical method for evaluating the e
We will show that the optimally reconstructed mean valueI ( f,
s) 5 *Tmin

Tmax f( x)ds( x) lies between maximal and minim
alues ofI ( f, s a), wheres a (a 5 1, P) are the reconstructe

distributions ofP independent measurements, performed u
the same physical and chemical conditions.

Because of the convexity of the setKM of all possible, idea
noiseless signals and of the linear dependence onds of the
mean value ofI ( f, s) (from Eq. [10]), the extreme values
I ( f, s), with s [ S9, whereS9 is some convex subset of t
simplex SN, are attained in the extreme points ofS9. In our
case, this means that the extreme values ofI ( f, s) are attaine
on some of the reconstructed populations {r a

a} for some a.
In our case,S9 5 conv(s a) (according to Eq. [11]) wher

s a are the singular distributions from Eq. [8]:

sk
~a! 5 E

a

b

xkds ~a! 5 O
a51

N

r a
~a!j a

k , a 5 1, P, k 5 1, M.

herefore

s a~ x! 5 O
a51

N

r a
~a!u ~ x 2 ja!,

whereu ( x) is the Heaviside function.
Thus

I 2 # E
a

b

f~ x!ds~ x! # I 1,

where

I 1~ f ! 5 max
a51,P

E
a

b

f~ x!ds ~a!

5 max
a51,P

O
a51

N

r a
~a!f~ja! 5 max

a51,P

I ~ f, s a!

I 2~ f ! 5 min
a51,P

E
a

b

f~ x!ds ~a!

5 min ON r a
~a!f~ja! 5 min I ~ f, s a!,
a51,P a51 a51,P
r.

er

and the error of the mean valueI ( f )

I ~ f ! 5 O
a51

P

wa O
a51

N

r a
~a!f~ja! 5 O

a51

P

waI ~ f, s a!

s bounded byuDI ( f )u # I 1( f ) 2 I 2( f ).
In order to have a clear, global view, we usually comp

a family of mean values with variablex0 or T0 of the form

Mx~ x0! 5 E
a

b

fSx 2 x0

b 2 a
z RxDds~ x!

r

MT~T0! 5 E
a

b

fS t 2 T0

Tmax 2 Tmin
z RTDdr~t!,

henRx or RT are the resolution factors inx or T variables.
The Mx( x0) or MT(T0), when f( x) is a positive function

peaked near 0.
We study the reproductibility of the curvesMT( x0) versus

x0, respectivelyMT(T0) versusT0, for various resolution facto
values. As expected, for highRx or RT, the reconstruction err
is very large; i.e., if we should want to localize some com
nents (low G), the error, in mean value increases. Thi
similar to Heisenberg’s uncertainty relations, but its origin
in the multiplicity of solutions of the finite-input (Marko
momentum problem and is not related to quantum physi
NMR.

IV.4. Relation to Other Methods

Our method differs from methods used previously (13, 14) by
its objective: instead of trying to reconstruct the distribution fu
tion dr(t) from Eq. [1b], which, as stated before, is nonuniqu
rigorous sense, we reconstruct the mean valuesI( f, s) from Eq.
[10] with f(t) smooth. In some cases this reconstruction ca
done directly (see Section II), but in general, we use som
proximate reconstruction ofds(x) or dr(t), as an intermediat
echnical step.Note that the computation ofI( f, s) has a healing
stabilizing effect. It is possible that by applying our “smoothi
I( f, s) to the output of previous methods (13, 14), we will obtain
more stable values.

From our previously rigorous treatment a few main con
sions emerge:

A. The measured signal never fulfills the positivity conditio
B. The filtered signal is on boundary of the set of

admissible, noiseless signal sequencesKM. If we do not know
a priori where the true signal is, we must perform a la

number of measurements, under the same physical conditions,
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327STABLE T2 RECONSTRUCTION
to obtain a sequence that shares the qualitative property
true signal—the fact that it is in inside ofKM.

C. Even if we have a signal inside ofKM, its reconstructio
is impossible. Trying to write programs with discretization
regularization (13), we in fact impose some new, unprov
assumptions. When the regularization is removed pro
sively or the discretization is refined, the above mentio
nonuniqueness shows up in the slowing down or nume
instabilities and in the dependence of the final results on
starting point of minimization.

D. These nonuniquenesses may be irrelevant for mea
ues (see, e.g., Section II, where the mean values were r
structed without nonlinear filtering, or Sections IV.1 and IV
where the mean values can be approximated by polyno
approximation of smooth function, without the reconstruc
of relaxation time). Consequently, our approach adds two
steps to the signal processing: one, computation of mean v
and, two, study of the stability of mean values (see Se
IV.3). Other algorithms (most preferably CONTIN, with p
itivity restriction imposed) can be used as preliminary st
but these, although useful, steps are important only for
reducing. The mean values can be computed directly
Sections IV.1 and IV.2) in the low-noise cases.

E. Linear methods of reconstruction (that do not imp
positivity restrictionR) in virtue of statements of Appendix
necessarily give rise to unphysical negative values of
reconstructed populations, in the case of the inversio
Laplace transform.

F. The success and apparent stability of previous re
struction methods can be explained by:

(1) The (eventually hidden or explicit, in the case
CONTIN) numerical implementations of some new,
proved regularizing restrictions (e.g., smoothness of re
ation time distribution function, fixed number of relaxat
times); and

(2) The fact that the true signal does not obey (R) and the
reconstructed signal, being on the boundary ofKM, is unique

ut this is a false impression of stability and uniqueness, u
e have no extra information that the true signal is really

he boundary of KM.

We remind that another method for treating unstable p
lems (8) consists of looking for solutions in a more restric
lass, e.g., in our case imposing smoothness on the rela
ime distribution function. Then the ouptut will be very sim
ualitatively to the output of our approach: a convoluted (
smooth function) relaxation time distribution function,

pite being numerically different, due to the nonlinearity
ltering. In our approach, we use only the positivity conditio
he regularizing effects of smoothing by convolution in

pproach are rigorously proved.
the
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V. NUMERICAL SIMULATION

We applied the mathematical method described above
series of simulated time-domain signals. The series of simu
time-domain signals was obtained as follows: The signal o
simulated NMR time domains9k at timetk 5 Dt z k is described b

s9k 5 s~kDt! 1 Dsk,

sk 5 s~Dt z k! 5 E
Tmin

Tmax

exp~2Dt z k/t!dr~t!

or

sk 5 O
i

niexp~2Dt z k/Ti!,

in case we choose a discrete spectrum, with knownni andTi ,
k 5 0, N similar to Eq. [1a], whereni , Ti , and consequent
sk are known andDsk are the Gaussian noise terms gener
by random number generator.

The functionf was chosen of the classC1(Tmin, Tmax), i.e.,
continuously differentiable, defined as

f~t! 5 5
0 if utu . G

S1 2 S t

GD
2D 2

if utu # G9
, [13]

where

G 5
Tmax 2 Tmin

R

andR (“resolution factor”) is a measure of the resolution.
The normalizationf(0) 5 1 is chosen so that whenR should

increase, the graph of the function

F~T! 5 E
Tmin

Tmax

f~t 2 T!dr~t!

5 f #
dr~t!

dt
5 I ~ f~t 2 T!, r~t!!, [14a]

where V stands for convolution product, or for a discr
spectrum

F~T! 5 O
a51

N

f~ta 2 T!ra, [14b]

would approximately reproduce the discrete distribution

populationsni , at relaxation timesTi . As we could expect,
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328 STEINBRECHER ET AL.
whenG decreases,R increases, so the error in the reconst
tion of F(T) increases. Note that when we expect continuou
multiple relaxation time signals, the dirac–delta normaliza
is preferred:

E
Tmin

Tmax

f~t!dt 5 1.

ut we must enlighten the more instructive (despite it b
nusual and unphysical)x representation, which for aT2

spectrum reduces to

s~kDt! 5 O
i51

N

nix i
k 5 E

a

b

xkds~ x!, with xi 5 expS2
Dt

Ti
D .

Depending on whetherxi andxi11 are separated or close, we
recover the distribution more or less exactly. We can o
another type of mean value by choosing instead of Eq. [13

f~t! 5
1

2
2

1

p
arctg

t

G
, [13a]

here

G 5
Tmax 2 Tmin

R

or

f~t! 5
et/G

et/G 1 e2t/G ,

i.e., smoothed Heaviside-like functions.
The noise contribution of each data point is a Gaus

TAB
Numerical Results fo

SNR (dB)

N 5 2 Rmax (for d2 # 0.015
(T1 5 500, T2 5 1000 ms) Rmax (for d2 # 0.055

Rmax (for d2 # 0.1 5 d

N 5 3 Rmax (for d2 # 0.015
(T1 5 500, T2 5 1000, T3 5 1500 ms) Rmax (for d2 # 0.055

Rmax (for d2 # 0.1 5 d

N 5 4 Rmax (for d2 # 0.015
(T1 5 200, T2 5 650, T3 5 1100,

T4 5 1650 ms)
Rmax (for d2 # 0.055
Rmax (for d2 # 0.1 5 d
distribution with a mean equal to 0 and a standard deviatio
-
or
n

g

in

n

equal tosnoise. The noise contributions of successive data po
are noncorrelated.

The signal-to-noise ratio (SNR) is defined by

SNR5 10 log10S signal power

noise varianceD
5 10 log10S¥ n50

M s2~n z Dt!

2~M 1 1!s noise
2 D . [15]

We use the expression ofd2

d2 5 3
iF 2 F9i L 2

2

iFi L 2
2 1 iF9i L 2

2

2
4

1/ 2

> 3
¥ k51

N9 uF~tk! 2 F9~tk!u 2

¥ k51
N9

~~F~tk!!
2 1 ~F9~tk!!

2!

2
4

1/ 2

, [16]

whereN9 is the number of discretization points,F(T) is com-
puted from Eq. [14b], from knownni and Ti , and F9(T) is
computed as follows: add tos(t k) (wheres(t k) is the “idea
signals” from knownni andTi in Eq. [1a]) a Gaussian noi
and computeF9(T) by our method using Eq. [14b]. With t
expression ofd2 from Eq. [16], we are able to characterize
reconstruction relative error. In the simulation process,
signal was constructed using Eq. [1a] (2# N # 4).

The values ofTi were chosen betweenTmin 5 0 ms (when
we have no extra information) andTmax 5 2000 ms@ Dt 5
8 ms with the same peak amplitudeni . The upper bound ofR
s 100. The reconstruction program does not useN from Eq.
[1a] as input.

In Table 1 we insert the maximum of the resolution fa
(Rmax from Eq. [13]) calculated at the various SNR values

1
umerical Simulation

40 60 66.5 70 8

ax) 3 6 6 6 7

ax) 12 24 25 25 2

x) 24 44 46 46 5

ax) 1 2 3 3 5

ax) 2 4 7 10 19

x) 3 6 14 20 37

ax) 1 2 2 3 4

ax) 2 3 4 5 9

x) 3 4 6 9 18
LE
r N

d2,m

d2,m

2,ma

d2,m

d2,m

2,ma

d2,m

d2,m

2,ma
nfor three thresholds ofd2,max, for R # Rmax, d2 # d2,max.
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329STABLE T2 RECONSTRUCTION
In Figs. 1, 2, and 3 are represented the convolution oT2

distribution with a smoothed dirac-delta-like function (
[14b]), with known (open circles) and reconstructed distr
tion (solid line) atR 5 3, 5, and 9, for the signal obtained
the sum of equally populated four exponentials.

We can evaluate (from Table 1) the confidence degree o
numerical result, which is similar to a low-resolution NM
experiment.

It is possible also to use another function, the “stairc
function-type Eq. [13a] for the convolution ofT2 distributions

ith a smoothed Heaviside-like function, with known a
econstructed distribution.

FIG. 1. The convolution ofT2 distribution with a smoothed dirac-del
like function, with known (open circles) and reconstructed distribution (
line) in the case ofN 5 4, R 5 3.

FIG. 2. The convolution ofT2 distribution with a smoothed dirac-del
like function, with known (open circles) and reconstructed distribution (
iline) in the case ofN 5 4, R 5 5.
.
-

he

”

Despite the localization not being so clear, these func
are more stable to experimental fluctuations.

VI. EXPERIMENTAL SIMULATION

The NMR measurements were performed with a pu
1H NMR Aremi-78 spectrometer (manufactured by the-
stitute of Physics and Nuclear Engineering, Bucha
Magurele, Romania) at a frequency of 25 MHz. The t
perature was controlled up to a precision of60.2°C by
airflow over an electrical resistance, using the variable
perature unit attached to the spectrometer. The tempe
in the sample was measured with a thermocouple conn
to a microprocessor thermometer. All NMR measurem
were carried out at 256 0.2°C.

For T2 estimations, we used a series of standard C
Purcell–Meiboom–Gill (CPMG) sequences (15) with variable
90°–180° interpulse delays (t 5 0.10–12 ms, adapted to
distinct among samples), 1024 points in common, 10 s
and a repetition delay (RD) of 10 s. These parameters allo
a good characterization of the slow relaxing component.
CPMG T2 decay was measured by sampling the height o
echoes.

For experimental simulation we have used different s
tions of extinctor substance for water protons MnCl2.

We used two different concentrations and twice-dist
water. First, we measured the relaxation timeT2 for every
sample using our many-exponential fitting program and
dated these by another nonlinear regression program bas
the Marquardt algorithm (16). As expected, we have obtain

d

d

FIG. 3. The convolution ofT2 distribution with a smoothed dirac-del
like function, with known (open circles) and reconstructed distribution (
line) in the case ofN 5 4, R 5 9.
n every case one exponential relaxation centered at 40, 400,
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330 STEINBRECHER ET AL.
and 2100 ms (see Figs. 4A, 4B, and 4C, respectively). Nex
analyzed the combinations of these three samples. An
quantity of each solution was enclosed in the capillary tu
and we analyzed them together. Thus, we obtained an e
mental signal composed of the sum of three exponentials
experimental signal has an SNR near to 50 dB. This signa
fitted by our program. As we expected, we obtained t
separate distributions near to the specific distributions d
mined in stage one (centered at 42.5, 386, and 2105 ms
Fig. 4D). If we admit that the three distributions from the fi
stage are reference signals for the distribution obtained in
two, we could calculateRmax for different d2 (see Table 2).

VII. PRACTICAL RECIPE

0. Normalize the signalsk 5 s(kDt), to s(0) 5 s0 5 1 and
retain old value ofs(0) for further application.

1. Select a discretization of timeTa or xa 5 exp(2Dt/Ta)
variablej a 5 exp(2Dt/Ta), whereTmin , Ta # Tmax, such
hat the discretization erroreN from Appendix C should b
much lower than the experimental error (see the recipe a
of Appendix C).

2. For one or, better, several signal sequences perfor
least-square fit: ifsk 5 s(kDt) is the signal, findra $ 0 which
gives, in the above discretized approximation, the best fi

sk > O
a51

N

raexp~2kDt/Ta! 5 O
a51

N

raj a
k ,

k 5 0, M, or k 5 1, M and ON ra 5 1,

FIG. 4. (A, B, and C) The reconstructed single convolution centered a
400, and 2100 ms, respectively; (D) the reconstructed convolution fro
sum of three exponentials. All the convolutions are drawn atR 5 15.
a51
e
ual
s,
ri-

he
as
e
r-

see
t
ge

nd

the

and store these values ofra. (CONTIN with regularization
and positivity condition imposed can be used.)

29. Repeat step 2 for various measurements performe
der the same phsyical conditions.

3. Select some smooth functionsf(t) (e.g., Eq. [13]
nd compute forTa (step 1) and ra (step 2–29) the

graph (F(T), T) of the functionF(T) (Tmin , T # Tmax)
given by

F~T! 5 O
a

ra z f~T 2 Ta!.

4. Study the error propagation from various signals (ste9)
to the graph ofF(T). In the case of poor reproducibilit

ecrease the resolution factorR, or select a new, muc
smoother functionf.

VIII. CONCLUSIONS

We proved that the straightforward functional analyt
approach to the NMR signal treatment could provide a c
setting of the questions about the possibility of obtain
numerically stable results onT2 distribution. Despite the fa
that it is impossible to exactly localize separated expone
terms, the mean value of the distribution functions can
reconstructed and generates, as a byproduct, a partial loc
tion of the T2 terms, even in the presence of noise.
numerical examples suggest that a partial localization
least 10% is always possible, even under the experim
conditions of SNR' 50–70 dB. In terms of functional ana
ysis, this kind of reconstruction of mean values is terme
“weak convergence.”

The objectives of future investigations are twofold: ma
ematical and experimental. From the mathematical poi
view, we must solve the problem stated at the end
Appendix E, in order to speed up the computations relat
the error estimation. From the experimental point of view
is important to work out the standardization of the functi
whose mean values we compute, which depends on
physical, chemical, and biological origins of the sam
investigated.

TABLE 2
Numerical Results for Experimental Simulation

SNR (dB) 50

Rmax (for d2 # 0.015 d2,max) 2
Rmax (for d2 # 0.055 d2,max) 6
Rmax (for d2 # 0.1 5 d2,max) 15

0,
he
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APPENDIX A

Direct Calculation of Some Mean Values without
Reconstruction of the T2 Distribution Function

The correctness for the choice of the cutoff parameter in
[3] may be verified by the Ho¨lder inequalities

U E P
i51

n

fidsU # P
i51

n S E f i
pidsD 1/pi

, O
i51

n 1

pi
5 1, 1 # pi,

which give, if b 5 ¥ i51
n b i ,

^Tb& # P
i51

n

^Tb ipi& 1/pi, pi $ 1, O
i51

n 1

pi
5 1. [A1]

We remark that valueŝTa&, a . 0, are more sensitive to lar
relaxation times. Nevertheless, we can roughly estimat
contribution of lower relaxation times in a stable way too.
obtain (using Eq. [2])

E
0

`

e2t/T0s~t!dt 5 E
Tmin

Tmax

ds~t!
t z T0

t 1 T0

5 T0 2 T0
2 E

Tmin

Tmax ds~t!

t 1 T0

5 T0 2 T0
2K 1

t 1 T0
L

t

.

Thus

K 1

t 1 T0
L

t

5 E
Tmin

Tmax ds~t!

t 1 T0
5

1

T0 S1 2
1

T0
E

0

`

e2t/T0s~t!dtD
>

1

T0 S1 2
1

T0
E

0

L

e2t/T0s~t!dtD . [A2]

ifferentiating Eq. [3] with T0, we can computê (1/(t 1

0))
2& t and the dispersion of 1/(t 1 T0):

K 1

~t 1 T0!
2L

t

5
1

T0
2 1

1

T0
3 E ` S t

T0
2 2De2t/T0s~t!dt. [A3]
0 k
q.

he
e

hen

s T0

2 5
Def KS 1

t 1 T0
2 K 1

t 1 T0
L

t
D 2L

t

5 KS 1

t 1 T0
D 2L

t

2 K 1

t 1 T0
L

t

2

. [A4]

ThensT0 provides an error estimation of the displaced byT0

harmonic meanTh.

APPENDIX B

Upper Bound of the Probability That the Experimental
Signal Should Be Mathematically Correct

Consider the less restrictive caseTmin 5 0 andTmax 5 `. Let
s1, . . . , sM, a random sequence withs0 5 1, 0 # sk # 1, k 5
,M, be uncorrelated and uniformly distributed. Denote byDM the

probability that this sequence be a true, idealized NMR signa
could be written like Eq. [1b]. We translate a result of (17) in
NMR terminology. According to (17) this probabilityDM is

DM 5 P
k51

M F ~~k 2 1!! ! 2

~2k 2 1!! G , [B1]

whereM is the number of equidistant samples.
In mathematical terms, this is the probability thats0,

1, . . . , sM) [ KM (or s0 5 1 and obeys (R)). Then, if instea
of ideal signals (s1, . . . , sM) we should have one distribut
according to probability distribution functionf(s1, . . . , sM),
the probability of obtaining a physically admissible (obey
restrictionR) signal would be

PM 5 E
KM

f~s1, . . . , sM!ds1, . . . , dsM # f#DM, [B2]

wheref# is the maximal value off(s1, . . . , sM). For a Gaussia
distribution, with dispersions1

f# 5 1/~Î2ps1!
M. [B3]

Taking an overoptimistic values1 5 1026 from Eqs. [B1]
[B2], and [B3] we find that for, e.g.,M 5 6, PM , 2 3 10227,
and is “cosmologically small” for higherM. If Tmin or Tmax are

nown, this probability will be smaller.
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APPENDIX C

The Discretization Error Estimated

Readers interested in applications can read only the
recipe, without the forthcoming proof. By definition, theKM set
can be viewed as the smalleset convex body inRM, which

contains the curveG: @a, b#O¡

f
RM, given byx3 { xk},

5 1, M. Consequently, we can approximate the curvG
by a general polygonal curveG N, whose vertices lie onG,
and K M by K M

N , K M where K M
N is the convex hull of th

oints’ polygonal lineG N.
We denote byja [ [a, b] the N points. We also denote bysa,

a 5 1, N, the vectors fromRM, sa 5 {sa,k}, with sa,k 5 ja
k.

ThenKM
N is the convex hull of the points {sa}, a 5 1, N,

KM
N , KM and forja equally spaced,

ø
N5M0

`

K M
N 5 KM.

Then we can computedN ($ d) (the discretization error)

dN 5 inf
$sk%[K M

N

dist~$sk%, $s9k%!,

and we have forsk [ KM
N

sk 5 O
a51

N

raj a
k , ra $ 0, s0 5 O

a51

N

ra 5 1.

The approximation error can be bounded readily. We de

eN 5 max
k51,M

max
a51,N21

D a
~k!, [C1]

whereDa
(k) is the maximal error in approximating on [ja, ja11]

he functionxk by the linear function

w~ x! 5 j a
k 1

j a11
k

ja11 2 ja

~ x 2 ja!,

which is a segment of the polygonal curveGN, the approxima-
tions of G joining two neighbor vertices.

The error induced by discretization is less thaneN.
Da

(k) can be computed easily:

D a
~k! 5 sup

l[@0,1#

~lj a
k 1 ~1 2 l!j a11

k 2 ~lja 1 ~1 2 l!ja11!
k!
[C2a]
al

e

or

D a
~k! 5 l* j a

k 1 ~1 2 l* !j a11
k 2 ~l* ja 1 ~1 2 l* !ja11!

k.

[C2b]

We notice thatl* is given by

l* j a
k 1 ~1 2 l* !j a11

k 5 S j a11
k 2 j a

k

k~ja11 2 ja!D
1/~k21!

[C3]

or

l* 5 FS j a11
k 2 j a

k

k~ja11 2 ja!D
1/~k21!

2 j a11
k G Y ~j a

k 2 j a11
k !,

[C4]

ndeN can be computed exactly.
We choosej k 5 exp(2Dt/Tk), where Tk are uniformly

distributed betweenTmin andTmax, and forN 5 350,M 5 230,
eN is less than 1024.

The recipe is to select a sequence of discretization poinTk

(Tmin # Tk # Tmax), computej k 5 exp(2Dt/Tk), computel*
from Eq. [C4], computeDa

(k) from Eq. [C2b], and from Eq
[C1] compute the discretization erroreN.

APPENDIX D

Proof of Stability in the Noiseless Case

We use the fact that, by the Weierstrass theorem, a co
uous function can be approximated by polynomials. Consi
sequence of noiseless signal:

sk 5 s~kDt! 5 E
Tmin

Tmax

exp~2kDt/T!dr~T!

5 E
a

b

xkds~ x!; k 5 0, M.

f sk obeys (R), it is well known, from the classical momentu
problem, that for finiteM there are an infinity of distribution
dr(T) or ds( x). Moreover, there are some representation

sk 5 O
i51

C

niexp~2kDt/Ti! 5 O
i51

C

nij i
k

with 2C . M 1 1, where some ofTi may be place
everywhere on [Tmin, Tmax] or j i on [a, b] (canonical repre-

sentation). Nevertheless, ifw(t) (Tmin # t # Tmax) or f( x)
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(a # x # b) are continuous functions, then for sufficien
largeM the integrals (mean values)I ( f, s) 5 * a

b f( x)ds( x),
or equivalentlyJ(w, r) 5 *Tmin

Tmax w(t)dr(t), have only a sligh
dependence onds( x). This happens because if someTk are
“misplaced,” the correspondingni will be small (e.g., bounde
by R. Nevanlinna “maximal mass” function (7)). Because o
the equivalence of momentum and NMR reconstruction p
lem, we will focus onI ( f, s). The precise statement is

Let sk 5 * a
b xkds( x) 5 * a

b xkds9( x), k 5 1, M be two
distinct reconstructions, andI 9( f, s) 5 * a

b f( x)ds9( x).
If f( x) is continuous on [a, b] then I ( f, s) 2 I 9( f, s) 3 0
as M 3 `.

Proof. By Weierstrass theorem, there exists polynom
M( x) that uniformly approximatef( x):

f~ x! 2 PM~ x! 5 RM~ x! 5 error [D1]

nd

sup
s[@a,b#

uRM~ x!u 5
Def

eM3 0 as M3 `. [D2]

Write PM( x) 5 ¥ k50
M pkx

k; thus

E
a

b

PM~ x!ds~ x! 5 E
a

b

PM~ x!ds9~ x! 5 O
k50

M

skpk. [D3]

Thus, the erroruDI ( f, s)u is bounded by

uDI ~ f, s!u 5 U E
a

b

f~ x!ds~ x! 2 E
a

b

f~ x!ds9~ x!U
5 U E

a

b

~PM~ x! 1 RM~ x!!ds~ x!

2 E
a

b

~PM~ x! 1 RM~ x!!ds9~ x!U
5 U E

a

b

RM~ x!ds~ x! 2 E
a

b

RM~ x!ds9~ x!U
# E

a

b

uRM~ x!uds~ x! 1 E
a

b

uRM~ x!uds9~ x!.

e have successively used Eqs. [D1] and [D2] and the fac

s( x), ds9( x) $ 0, and the next using Eq. [D3]:
b-

ls

at

uDI ~ f, s!u # eMS E
a

b

ds~ x! 1 E
a

b

ds9~ x!D
5 eM z 2s0 3 0 ~by Eq. @D2#!.

APPENDIX E

Stability in Experimental Situations

We denote bys9M
2 5 ¥ k51

M (Ds9k)
2 the estimated mea

square error and letsM $ s9M be an error bound. We will giv
a definition of experimental stability by requiring that if
number of dataM increases and the mean-square experim
error boundsM decreases to 0, then the reconstruction err
I ( f ) should be small.

DEFINITION. A reconstruction method ofI ( f, s) is sM-
experimentally stable(with limM3` sM 5 0) if the reconstruc-
tion error (DI )M 3 0.

Then we have the following:

THEOREM. Let f [ C1[a, b] and PM( x) be a polynomial o
M 2 1 degree which realizes the infimum

inf
PM~ x!

E
a

b

~ f9~ x! 2 PM~ x!! 2dx, PM~ x! 5 O
k51

M

bkx
k21.

We denote that CM 5 (¥ k51
M (bk/k) 2) 1/ 2.

If sM z CM 3 0, then the reconstruction issM-experimen-
tally stable.

Proof. Let f( x) 5 RM( x) 1 ¥ k51
M pkx

k, I ( f, s) 5 * a
b

f( x)ds( x), and assuming that in Eqs. [11] and [12],f( x) is
continuously differentiable, integrating by parts we obt
from Eq. [12]

I ~ f, s! 5 O
k50

M

pksk 1 RM~b!s~b! 2 RM~a!s~a!

2 E
a

b

R9M~ x!s~ x!dx. [E1]

e can chooses(a) 5 0 andRM(b) 5 0. Thenus( x)u # 1
(s0 5 1). The error is bounded by

uDI ~ f, s!u # O
k51

M

upkiDsku 1 E b

uR9M~ x!us~ x!dx, [E2]

a



C f.
tain
ty

T

f

1

1

1

1

1

1
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and by the Schwartz inequality

uDI ~ f, s!u # ~O
k51

M

pk
2! 1/ 2~O

k51

M

Dsk
2! 1/ 2 1 ~b 2 a! 1/ 2

3 S E
a

b

~R9M~ x!! 2~s~ x!! 2dxD 1/ 2

. [E3]

If we definepk z k 5 bk, then

uDI ~ f, s!u # S O
k51

M Sbk

k D 2D 1/ 2

z sM 1 Î~b 2 a!

3 S E
a

b

~ f9~ x! 2 O
k51

M

bkx
k21! 2dxD 1/ 2

. [E4]

ThusuDI ( f, s)u # CM z sM 1 =(b 2 a) z infPM * a
b ( f9( x) 2

PM( x)) 2dx 5 CM z sM 1 =(b 2 a) z dM. But becausef9 [
1[a, b], dM 3 0 whenM 3 `, which completes the proo
We remark that this is only a sufficient condition. To ob

the best bound onDI ( f, s) from Eq. [E4], using the inequali
a 1 b # =2(a2 1 b2) we obtain

SDI ~ f, s!

2 D 2

# s M
2 z O

k51

M Sbk

k D
2

1 ~b 2 a! z i f9~ x! 2 O
k51

M

bkx
k21i 2. [E5]

hus (DI ( f, s)) 2 # 2 z e 2(M, a, b, sM), where

e 2~M, a, b, sM! 5 inf
bk
Ss M

2 z O
k51

M Sbk

k D 2

1 ~b 2 a!

3 E
a

b

~ f9~ x! 2 O
k51

M

bkx
k21! 2dxD .

[E6]

The computation ofe 2(M, a, b, sM) from Eq. [E6] is a

standard Hilbert space optimization problem, forM 3 ` and
a simple algebraic problem for finiteM. The investigation o
the whole class of functionsf( x), whene 2(M, a, b, sM) 3 0
asM 3 ` is still an open problem in functional analysis.
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