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Assuming that an original distribution is a probabilistic measure  NMR ideal noiseless signai(t) for T (spin—spin relaxation
and the Laplace transforms are known only for a finite number of  time) may be represented & (
points that are affected by errors, we develop a method for recon-
structing weak-sense mean values obtained by integrating smooth

functions with the measure. Our method is useful in NMR if the N N
NMR signal can be represented as a superposition of exponential s(t) = > nexp(—t/T), n,=0, X nj=1,T,>0, [1a]
terms. In these circumstances, we show how the data processing i=1 i=1

can be related to the classical Hausdorf momentum problem. First,
we clarify the meaning of stable spectrum reconstructlon,_and then wheren, and T, are the populations and the relaxation times,
develop stable filtering and a mean value reconstruction algo- :
. i respectively.
rithm. Our method has been tested on both simulated and real sets . .
; . ; ) - - : Due to lack of information om; and T;, we are forced to

of spin—-spin relaxation curves with noise. In view of this, our ider th | tati
method could provide an efficient and accurate reconstruction of consider the more general representation
spin-spin relaxation data. For any reader interested in applica-
tions, a “practical recipe” that is almost self-consistent has been Tmax
included. © 2000 Academic Press S(t) = eXF(_t/’T)dp(T)

Key Words: time domain; NMR; relaxation; classical momen- T
tum problem; numerical Laplace transform inversion.

= > nexp(—t/T,) +J " exp(—t/7T)e(T)dr.  [1b]

I. INTRODUCTION

In Eq. [1b] p(7) is a Borel measurable nondecreasing function

In the interpretation of the spin—spin relaxation data, the firsthose continuous part @f(7) is associated with a continuous
temptation is to invert the Laplace transform, in order tmelaxation time spectrum, typical in nonhomogeneous dispers
recover population densities and relaxation times. An almast multiphase media, and the jump pointsedfr), (T;), cor
similar mathematical problem was treated extensivelyliy ( respond to the discrete spectrum. We denotd hy and T .,
where the difficulties related to the numerical inversion of ththe known bounds on relaxation times, obtained from othel
Laplace transform are solved in the special case of a knowrperiments or theoretical models. The simplest, blivejal
upper bound on the number of populations (exponential termglestion that one may raise is how to compute the population
In most situations, the restrictions imposed i) @re not n; and the relaxation times;, or, more generally, the distri
satisfied (there is no upper bound on the number of populaution functionp(r) from the sequence of samples affected by
tions, and, moreover, there can be an infinity of them). In thésrors 6, = s(kAt) + As,, whereAs, is the experimental
work, we solve such a generalized reconstruction problem. Téeor). As explained in Section lll, the direct reconstruction of
final recipe is given in Section VII. the populations; and the relaxation times; is impossible if

In most previous works the computation of NMR parameN from Eq. [1a] is not known, because of the mathematical
ters, such as relaxation times and populations, is stronghgstability of the problem itself, even in the idealized noiseless
dependent on the particular details of the reconstruction algmse, whers(t) is known in a finite number of points. Never-
rithm; in other words, the reconstruction is unstable. theless, as we show in Section I, we could compute som

In this paper we suppose that the dependence on time of thean values, of the forfi;™ f(7)dp(7), for some especially

min
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selected(r), directly froms(t), without computingn;, T;, or simple quick algorithm (without filtering) for some mean value
dp(7), shortcutting the reconstruction instability of the meacomputations, which can be implemented in stable form: the
suredp(7) (or n; andT)). mean valuegT®) can be computed from the identity

In Section Il we expose a simple and stable method that
could be applied directly to extract some global information on N 1 w
n; and T;, without sharp localization of;. This result is the (T = J Tedp(T) = FJ' t* 's(t)dt, [2]
starting point, which justifies a more rigorous treatment. Toin (@) 0

In Section Il we expose the connection to the classical

momentum problem3 4) and describe the filtering algorithmey (1<) = SN, Ten,, for discrete distributions. For simplicity,

of the noise-perturbed data. we prove Eq. [2] in the case: using Eq. [1a], we obtain
In Section IV we generalize and clarify the results from Sec-
tions Il and Il by solving the reconstruction problem from noisy N
s, for the mean valueg!™ f(7)dp(), if f(r) is a smooth and at N sttt = J’w exp(—t/T )t Indt
least continuously differentiable on thg;,, = 7 = T, function. : !
In Sections V and VI we apply the mathematical method from
Section IV to a series of simulated and experimental signals. N "
In the followings we consider,,, or T, to be known, 6= T, = E n; f exp(—t/T,)t* dt.
< Trax = . In case we have no extra information (which could i=1 o
increase effectiveness), even in the extreme cases of lack of

information T, = 0 @nd/orT,, = =), our results are still valid. The jntegrals can be reduced to the Euler gamma funEan=
Without any I(T)ss of generaI!ty, we can consﬂ@ nprmahzed % expy)y“'dy by substitutiony = t/T,. « is a complex

asg(0) = 1, or [37 dp(7) = 1; i.e.,dp is a probabilistic measure, nymper, with Ref) > 0, but not too large. Then Eq. [2] follows

respectively >, n, = 1, for discrete distribution and, can be immediately from Eq. [1b] and the definition 6T°).

interpreted in probabilistic framework. ~ Let us suppose that: (a) we have a good numerical interpc
The case wherdl from Eq. [1a] is known can be found in 4tion of s(kAt) ~ s(t) necessary for numerical integration:

(1), so this can be considered a solved problem, at least whgiy (b) there is an upper cutoff, such that we could approx-

N is not too large. o . __imate the integrals
Thus, the essential point is the following (perhaps a little

deceptive) statement: the reconstructiomrpofindn; from Eq. B N

[1a] or p(7) (¢(t)) from Eq. [1b] is impossible, but we can f S()(. . )dt= f s(H)(. . )dt 3]
reconstruct a “smeared out” or “convoluted” distribution,

which could give some “fuzzy” information on the relaxation ° °
times and populations. The basic argument for the impossib'IA— is less or equal to the measuring time)
ity of direct reconstruction is the intrinsic mathematical insta- In Eq. [2] wg have two Kinds of %umeri;:al instabilities: If
bility, a consequence of the nonuniqueness of the finite-inpyt q: . _— e
classical momentum problem. This does not mean that g(a) < l’. the |'nstab_|I|t|es that appear &~ 0 and, if o is
reconstruction in TD low-resolution NMR should be aban? 3¢’ the |nce_rt|tude in Eq. [3] a_t large .
doned. Though at different scales, we can compare this situa’—o‘ good choice appears to ke = 1, when we obtain
tion with the impossibility of long-term prediction in unstable

chaotic deterministic systems (fluid dynamics, meteorology, Jw U f\ Sodt
0 0

0 o i=1

and celestial mechanics) or classical statistical physics and (M=
molecular dynamics where, although the trajectories of mole-

cules depend sensitively on initial conditions, the macroscopic (the arithmetic mean value of relaxation time
observables can be computed in a safe manner, as mean values
of microscopic quantities. which was used ing, 6).

Becausd'(n) = (n — 1)!(n € Z,), we can compute
I1. DIRECT RECONSTRUCTION OF MEAN VALUES

(WITHOUT NONLINEAR FILTERING)

All of these calculations can be performed easily on a small
programmable pocket calculator in an extremely stable man-
ner. For readers interested in applications using a powerful PC, 1 [~
this part may be skipped. (TH = 3,j t3s(t)dt,

Despite the fact that filtering increases efficiency, there is a “Jo

(T?) = J’wt-s(t)dt, (T3 =;r t2s(t)dt,
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which gives classical, but still actual problem of functional analysis4, 7).
For M = 2, this problem has a clean mechanical interpretation
o2 = ((T? — (T)? (the dispersion Let an inhomogeneous rod, with constant cross section placed «
s Ox axis, be betweeaandb, and leto(X) the (unknown) total mass
a = (T—(M) (the asymmetry, be betweera andx. Thens,, s,, S, are the total mass, baricenter,
° o’ ’ and inertia moment. Then our problem is to find as much a
(T —(TH* information about mass.distributim‘(x), knowing onlys,, s, S,.
k= = (the kurtosis. WhenM = «, Eq. [4] is known as the Hausdorf momentum

problem, while forM finite this is the Markov or incomplete
) _ Hausdorf momentum problem. The incomplete Hausdorf momer
We can compute also the displaced By “harmonic mean y,m problem is related to the problem of extrapolation for analytic
value,” T, functions (). The general aspects of stability questions in numer-
ical computations, with applications to the scattering theory of
1 pet [ Tm dor(7) per 1 elementary patrticles, were treated 8) 9. An adaptation of a
< . T0> = Tt T, Tot T, generahzgd Markov momen_tum prol:_)Iem to lattice gauge theor
Tmin computation was proposed ih@) and in the quantum few-body
problem, in (1).
using Eqg. [Al] and its dispersion (see Appendix A). Contrary to intuition, the conditions; = 0 from Eqg. [1a] or
The drawback of these methods is the following: (a) congtlo(x) = O from Eq. [4b] give rise to very strong restrictions
putation of higher moment¢T?), (T°), and (T*) can be whenM is large, given by the following Proposition TI)( For
strongly affected by errors &{t) for larget; (b) the harmonic reader’'s convenience we anticipate that these conditions i
mean values are insensitive on the laffecomponents of experimental situations are never fulfilled. Nevertheless, thit
do(7); (c) even in small error cases, we do not obtain localizésisue is conceptually influencing the present work.
information.

ProposiTion1. The restrictions ors,. The representation

11l. CONNECTION TO THE CLASSICAL MOMENTUM [4] of s, as moments of a positive measure stands if and onl
PROBLEM AND NONLINEAR FILTERING OF DATA if the following quadratic form¥Q, and Q, are nonnegative
(we will abbreviate these restrictions biR)j.
lll.1. Existence of Representation [1b] and

_ RS (@) M: even. We defing” = —s,,, + (@ + b)s, —abs, k=
Necessity of Filtering

0,M — 2, thenQ, = =% SWaZnz, andQ, = I o SwenZnZe

The noiseless part of the signal sequence (b) M: 0dd.s” =b*s, — S, k=0,M - 157 =5, — a-
So k=0,M — 1, thenQ; = 311 7.1 ZnZn, Q2 = Znalo SnZinZ
Tmax
s = s(k- At) = J exp(—kAt/7)dp(7), We emphasize that the necessity of these conditions for Ec
Tin [1b] is elementary to check. Sufficiency is more difficult. In the

NMR terminology, for the noiseless, ideal signal samples,
representatiors(kAt) = XL, n,exp(—kAt/T,) (or more gen
o erally Eq. [4a]) is possible, with; = 0, Ty < T; = Touif
by substitutionx = exp(—kAt/7), o(e ™) = p(7), can be and only if the restrictionsR) are fulfilled, witha andb given
rewritten as by Eq. [4c]. If (R) are fulfilled, we could use the whole
collection of analytical method¥’). We denote byK,, the set
b - of all vectors §5,} i' € R", which satisfiesR) ands, = 1, i.e.,
S = j x*do(x), k=0, M, do(x) = 0, [4b] the set of all ideal normalized signal samples. Cle#lyis a
a closed bounded convex subsetRIf. For convexity remarks,
see below.
where At first sight we can expect that if experimental error would
be small, the above conditions should be fulfilled and we coulc
a=exp(—At/T,;,), b = exgd —At/T,.), 0=a<b=1. Use the Whgle classical theory apd uB? (o reject some dgta.
The numerical tests and analytical results (explained in Ap:
[4c]  pendix B) show the probability that the error-affected signal
sy = s(kAt) + As, fulfills (R) is very small, and iM = 5 it
The unphysical variablex will be important in the following, should be meaningless to test. If we uBg {0 reject some data,
relating our NMR problem to a standard mathematical one. Thé of them will be rejected.
study of the properties oflo(x), starting from Eq. [4b] is @ Thisis a very important fact, mainly for readers who will be

dp(7) =0,k=0, M, [4a]

— At/
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tempted to learn unnecssary topics on classical momentum N

problem, for further developments. In order to prove the above se= > .,

statement, we use in Appendix B the elegant result of Karlin a1

and ShapleyX7). Translated in NMR terminology, they in fact

hopefully computed the probability that a sequence of signal M N

samples 0= s, = 1 taken randomly and independently, all inf (X (sk— X &5pa)?) = M8?, [6]

uniformly distributed on [0, 1], could be written as Eq. [1a] or PEEN =0 a=1

Eq. [1b], i.e., to be an ideal, noiseless true physical NMR signal

(for details see Appendix B), although in theirs pagdéef) there where 6 is the least-square deviatiog, € [a, b] are the

is no reference to NMR and probabilities. discretization points, and is the N-dimensional standard
Therefore, ifM = 5, the test of positivity conditions is simplex, i.e.,

meaningless because it is too restrictive and practically never

fulfilled. In order to work in a mathematically correct context, N
we must replace the experiment sequesgdy another se Su=pdlpa=0: S p. = 1}
quence, which (a) satisfieR), and (b) approximates; opti- e =

mally. The convexity of the sé€,, is an important fact. Similar
to, e.g., 2- and 3-dimensional cases, the closest point Kgm s

. . . . C R", with N large enough (e.g., foN = 3, 3 is the
to a point outside of this set is always on the boundary. Byt .
because the interior points in Eq. [1b] are those with> 0, Fnangle whose vertices are (1, 0, 0), (0, 1, 0), (0,0, 1)). e

the boundary points will be af, = 0 (in fact, in many of the a = 1, N are the reconstructed, approximated populations.

ractical applications, only few<(10) are nonzero) The optimization algorithm used by the authors is then &
P PP » only ' slight modification of the Fletcher—Reeves (FR) conjugate gra

dient method, because the optimization may proceed either i
I11.2. The Filtering interior (p, > 0) or on the “faces” (severgl, = 0) of the
. . , simplex 2, which are lower dimensionall®). In the latter
Next we cope with the following problem: Find the best,qeg we applied the conjugated gradient method, restricted
approximation of the perturbed-by-noise data by some ., asnonding “faces,” until the boundary (i.e., a neywarr
{sd € Ky, i.e., by some ideal, normalized signal sequence. liying) is attained. Then the FR algorithm is restarted at the
the noise is not correlated, stationary, and additive, then tngw face, with new free variables. The procedure ends after
rigorous meaning would be to find the se;quense} {€ Kufinite number of steps, exactly in the interior point of a face (or
that realizes the optimal approximation tei, on a vertex), i.e., much gf, are zero (only one, is nonzero,
i.e., a single exponential representation).
_ : , As a stop criterion, the condition may be chosen that the
o= {Sk;r;fKM dkl,,St({Sk}' {sid), B Fetcher_Reeves iteration should not attain to the boundary of
given face of the simplex. In our examples, usually this part of
optimization ended at a face & with very low dimensions
where (=6), depending on the true spectrum of the signal and the nois
At this stage the CONTIN packaged could be used
- instead of the previous optimization algorithm, with the posi-
tivity condition imposed, without regularization.
M > (s~ SL)Z‘Wk] : After computing the infimum from Eq. [6], we obtain a
k=1 representation of the form as that in Eq. [1a],

M

d’\iASt({Sk}r {sit) =

where, in our case, the weightsv() were equal and ner N )
malized to 1. Sc= 2 potl k=0, M, [7]
By standard convexity and compactness arguments it fol- a=1

lows that (see Ref.1Q)) the infimum (a) is attained, (b) is

unigque, and (c) is just on the boundary of the convex hdgy with p, = 0.

i.e., 2N<M + 1, forM-odd (7), and (d) by filtering, the error Remember a fundamental result froi):(Every sequence,

does not increase. All of these statements can be illustrafesin Eqgs. [1a] and [1b] (or equivalently), that satisfies the

geometrically in particular cases, whéh = 2, 3, 4. positivity conditions R) could be represented as Eqg. [7] in an
For numerical convenience our filtering problem may biafinity of manners if N > M + 1. Moreover, at least one of

approximated by the following discretized version (see Appegd; may be placed everywhere, oa, [b]. In Eq. [7] we have at

dix C for the discretization error bound): least a free parameter and the corresponding quadratic forn
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are strictly positive. In our case, the sequence is on the bouderdp(7) = 0. Next we discuss the stability of reconstruction
ary, and we can proceed on a further optimization, by refinirgg mean values, which generalizes those treated in Section |
the discretization setd} in [ a, b] and keeping, = 0, having Define the mean value of the functid(x) as

as inputs the values obtained from stage 1.

b max
I11.3. The Reconstruction of the Original Signal I(f, o) fo f(x)do(x) = JT f(exp(—At/7))dp(7)
If we performedP measurements under the same physical a Trin
conditions and filtered each of the signal sequences, then let [10]
there be £}, ..., {s}, k = 0, M, the collection of signal
sequences, with the associated weigifs> 0, X5, w, = 1.

wheref is at least a continuous function.

Denote by The word “stability” will be defined now.
P IV.1. Mathematical Stability (Idealized Case)
sid=2 pPéLk=0,M,a=1,P [8] L
a1l Let us suppose tha, (k = 0, M) satisfies the positivity

conditions and is exact (i.e., no measuring error appears). |

the representations after filtering, which are unique as we statBt§ case, we are interested only in the estimation erro( bf
previously. This uniqueness gives the false impression of corre& from Eq. [10], due to the finite amount of information sp
and stable reconstructioBecause, as we have seen, the filterddt = 0, M), whenM is finite. In Appendix D we used the fact
signal is always on the boundary &, irrespective of the that |f_ f(x) is contl_nuogs, thg error due to nonunique recon-
spectrum of unperturbed, ideal, true, noiseless signal, the filtefgHCtion of relaxation time distribution should decrease to 0 a
signals separately cannot reproduce the correct behavior becdise” - This is a well-understood mathematical result, but we
the true, noiseless signal most probably is in the interidf,af ms.er_t it here for_the nonmathema_ltluan re_ader_’s convenience
On general grounds, the convex (weighted) mean This is the meaning of “mathematical” or “idealized” stability.
Even whenf(x) is not continuous, we could also prove the
stability under several restrictions, but we did not make use o

P . -
Sew = S siw, [9a] this possibility.
ot IV.2. Experimental Stability (Real Case)
of the signal, or The problem is that many test functioff) of high interest,

namely those which are strongly peaked in the neighborhood ¢
some points and take small values away, i.e., those which cou
give us localized information, despite the approximations by poly-

P
pa= 2 PIW, [9b]
n=1 . . . . .
nomials (from Appendix D), give rise to an error teRy(X), with

for large P must be used, instead of separate representations

given by Eq. [8]. M )
The choice of the weight in Eq. [9a] depends only on Ru(x) = f(x) = X pix~. [11]
experimental conditions. We uses, = 1/P. When P is k=0

sufficiently large, the computed sequencg,{ will be an

interior point of the set of all physically admissible sequenc&¥ith Ry(X) very small on g, b], the coefficient, might be

(i.e., allp, > 0), and at least in this respect more resembling ¥gry large numbers, which is a well-known fact in numerical

an unperturbed, original signal sequence, in the generic caggalysis. The previous approximation (see Appendix D) in
realistic cases whes, = s, + Asy,

IV. RECONSTRUCTION OF MEAN VALUES

M
As we stateq .in Sectioq 1.2, if the signal should Sgtisfy the |(f, o) = Jb (0do(0 = S pe + Jb R0,
positivity conditions and if we should have no precise infor- k=0 A
mation on the number of terms in Eq. [1a], or worse, if we
should have continuous components (as in Eq. [1b]), the re- [12]
construction could not be performed unambiguously. In the
followings we attack the reconstruction problem with moreontains in fact a new error terd p, - As,, whens, are
precautions; i.e., we do not suppose any extra constraintsaiffected by errors. At least to our knowledge, this problem wa:s
do(x) (ordp(1)), with the exception of Egs. [4] amdlr(X) = not treated.

a
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The elucidation of this mathematical problem is given iand the error of the mean valuléf)
Appendix E.

P N P

IV.3. Practical Method for Error Estimation () =S w, D p@g,) =S wl(f, o9
Next we expose a practical method for evaluating the error. a=1  a=1 a=1

We will show that the optimally reconstructed mean val{ig

o) = [i™ f(x)do(x) lies between maximal and minimalis bounded byAI(f)| = I.(f) — 1_(f).

values ofl (f, %), wherec® (a = 1, P) are the reconstructed In order to have a clear, global view, we usually computec
distributions ofP independent measurements, performed undaifamily of mean values with variabbe, or T, of the form
the same physical and chemical conditions.
Because of the convexity of the 4€f, of all possible, ideal, b
My(Xo) = J f(
a

noiseless signals and of the linear dependence®rof the )t() Xo Rx) do(X)
mean value of (f, o) (from Eg. [10]), the extreme values of —a
I(f, o), with 0 € X', whereX’ is some convex subset of the
simplex 3, are attained in the extreme points Bf. In our
case, this means that the extreme valudg &f o) are attained
on some of the reconstructed populationpg¥ for some a.

In our casey’ = conv(c?) (according to Eq. [11]) where Mi(To) = fh f( T— T
o are the singular distributions from Eq. [8]: o T

a

: RT> dp(7),

max Tmin

whenR, or R; are the resolution factors xor T variables.

The M,(Xo) or M+(T,), whenf(x) is a positive function,
peaked near O.

We study the reproductibility of the curvégd (x,) versus
Xo, respectivelyM(T,) versusT,, for various resolution factor
values. As expected, for higR, or Ry, the reconstruction error

N is very large; i.e., if we should want to localize some compo-
ci(x) = 2 pPO(x — &), nents (lowI), the error, in mean value increases. This is
a=1 similar to Heisenberg’s uncertainty relations, but its origin lies
in the multiplicity of solutions of the finite-input (Markov)
where 6 (x) is the Heaviside function. momentum problem and is not related to quantum physics o
Thus NMR.

b N
s =J xdo@ = > p@¢k a=1,P, k=1, M.
a

a=1

Therefore

IV.4. Relation to Other Methods

b
= f f(x)do(x) = 1., Our method differs from methods used previoudg,(19 by

its objective: instead of trying to reconstruct the distribution func-
tion dp(7) from Eq. [1b], which, as stated before, is nonunique, in
where rigorous sense, we reconstruct the mean vall(iesr) from Eq.
[10] with f(7) smooth. In some cases this reconstruction can b
b done directly (see Section Il), but in general, we use some af
I.(f) = max f f(x)do® proximate reconstruction alo(X) or dp(7), as an intermediate
a=1p technical stepNote that the computation off, o) has a healing,
stabilizing effect. It is possible that by applying our “smoothing”
I(f, o) to the output of previous methods3, 14, we will obtain
more stable values.
From our previously rigorous treatment a few main conclu-

b sions emerge:
min | f(x)do®
a

N

max >, p@f(¢,) = maxI(f, o?
a=1P o=1 a=1pP

[_(f)

aip A. The measured signal never fulfills the positivity conditions.
B. The filtered signal is on boundary of the set of all

N admissible, noiseless signal sequeri€gs If we do not know
min >, p@f(£&,) = min I(f, o®), a priori where the true signal is, we must perform a large
a=1P g=1 a=1p number of measurements, under the same physical condition
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to obtain a sequence that shares the qualitative property of the V. NUMERICAL SIMULATION

true signal—the fact that it is in inside &f,. ) . )
C. Even if we have a signal inside Kf,, its reconstruction e applied the mathematical method described above to

is impossible. Trying to write programs with discretization 0§_enez of S|.mul_ated| t|me—dog1a!n sd|gnalfs.”The .se[:es of swnufla;e
regularization {3), we in fact impose some new, unproved'me' omain signals was obtained as follows: The signal of the

assumptions. When the regularization is removed progrgémmated NMR time domaig, at timet, = At kis described by

sively or the discretization is refined, the above mentioned

[ —
nonuniqueness shows up in the slowing down or numerical si = s(kAt) + As,

instabilities and in the dependence of the final results on the Trnax
starting point of minimization. S = S(At- k) = exp(—At - k/iT)dp(7)
D. These nonuniquenesses may be irrelevant for mean val- Tmin

ues (see, e.g., Section I, where the mean values were recon-
structed without nonlinear filtering, or Sections 1V.1 and V.20
where the mean values can be approximated by polynomial
approximation of smooth function, without the reconstruction
of relaxation time). Consequently, our approach adds two new
steps to the signal processing: one, computation of mean values

e .IN Case we choose a discrete spectrum, with knowandT;,
and, two, study of the stability of mean values (see Sectlﬁn P a

|V3) Othgr glgo.nthms (most preferably CONTI,N’, with POS5 are known and\s, are the Gaussian noise terms generatec
itivity restriction imposed) can be used as preliminary stepﬁy random number generator
but these, although useful, steps are important only for erorrhe functionf was chosen of the Class (T o T, ii€.

reducing. The mean values can be computed directly (St?@ntinuously differentiable, defined as
Sections IV.1 and IV.2) in the low-noise cases.

E. Linear methods of reconstruction (that do not impose 0if [t| >T
positivity restrictionR) in virtue of statements of Appendix B
necessarily give rise to unphysical negative values of the f(t) = (1 -~ <t> 2>2 e r [13]
reconstructed populations, in the case of the inversion of r N
Laplace transform.

F. The success and apparent stability of previous recothere
struction methods can be explained by:

sc= > nexp(—At-k/T),

= 0, N similar to Eq. [1a], whera,, T;, and consequently

Tmax - Tmin

I'= R

(1) The (eventually hidden or explicit, in the case of

CONTIN) numerical implementations of some new, un-

proved regularizing restrictions (e.g., smoothness of reIaQU_Iqr? ( resoIlIJ.tlo?_ fzc(t)or_) |13_a n;]easure otfhthte rr(]a;gluhtlor;a
ation time distribution function, fixed number of relaxation e normalizatiori(0) = 1 is chosen so that whenishou
times): and Increase, the graph of the function

(2) The fact that the true signal does not obRY &nd the
reconstructed signal, being on the boundarKgqf is unique.
But this is a false impression of stability and uniqueness, unless
we have no extra information that the true signal is really on

the boundary of k. =f® d’;i(tt) =1(f(t = T), p(t)), [144]

FM=|  ft-Tdo(t

Tmin

We remind that another method for treating unstable prob-
lems @) consists of looking for solutions in a more restrictedvhere ® stands for convolution product, or for a discrete
class, e.g., in our case imposing smoothness on the relaxatpectrum
time distribution function. Then the ouptut will be very similar
qualitatively to the output of our approach: a convoluted (with N
a smooth function) relaxation time distribution function, de- F(T) = D f(t, — Tpa, [14b]
spite being numerically different, due to the nonlinearity of a=1
filtering. In our approach, we use only the positivity conditions.
The regularizing effects of smoothing by convolution in ouwould approximately reproduce the discrete distribution of
approach are rigorously proved. populationsn;, at relaxation timesT;. As we could expect,
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TABLE 1
Numerical Results for Numerical Simulation

SNR (dB) 40 60 66.5 70 80

N=2 Ruax (fOr 8, = 0.01= 8,na) 3 6 6 6 7
(T, = 500, T, = 1000 ms) Ruax (for 8, = 0.05 = 8,1 12 24 25 25 29
R (for 8, = 0.1 = 8,2) 24 44 46 46 52

N=3 Ruax (fOr 8, = 0.01= 8,na) 1 2 3 3 5
(T, = 500, T, = 1000, T, = 1500 ms) Ruax (for 8, = 0.05 = 8,,1) 2 4 7 10 19
Ruax (fOr 8, = 0.1 = 8, 3 6 14 20 37

N=4 Ruax (fOr 8, = 0.01= 8,na) 1 2 2 3 4
(T, = 200, T, = 650, T; = 1100, Ruax (for 8, = 0.05 = 8,1 2 3 4 5 9
T, = 1650 ms) Ruax (fOF 8, = 0.1 = 8ma) 3 4 6 9 18

whenT decreaseR increases, so the error in the reconstruequal too s The noise contributions of successive data points
tion of F(T) increases. Note that when we expect continuous are noncorrelated.
multiple relaxation time signals, the dirac—delta normalization The signal-to-noise ratio (SNR) is defined by

is preferred:
. signal powerl
J f(t)dt = 1.
Trmn

SNR=10 '°91°(mis,evananc

ZnMZO Sz(n * At)
=10 logo| 57773 |- [15]
. . . . . . Z(M + 1)Unoise
But we must enlighten the more instructive (despite it being
unusual and unphysicaly representation, which for &, _
spectrum reduces to We use the expression 6§
% [ p( At) o | IF=FIE 1
kAt) = D>, nix = x‘do(x), with x =exp — = =\|verz Cenz
sl = 2 nx o) T >~ IFIZ + [Pl
: 2
Depending on whethet andx;., are separated or close, we can NUIF(t) — Fr(t)]? 12
recover the distribution more or less exactly. We can obtain = (Ft)) 2+ (F (t))?) ) [16]
another type of mean value by choosing instead of Eq. [13] I >

1 1 t
f(t) =5 — _arctgy, [13a] whereN' is the number of discretization poins(T) is com-
puted from Eq. [14b], from knowm; and T;, and F'(T) is
computed as follows: add ts(t,) (wheres(t,) is the “ideal
signals” from knownn; andT; in Eq. [1a]) a Gaussian noise
T —T. and computd='(T) by our method using Eq. [14b]. With the
r=-"™_m expression ob, from Eq. [16], we are able to characterize the
reconstruction relative error. In the simulation process, the
signal was constructed using Eq. [1la] £ N = 4).
or The values ofT; were chosen betweéh,,, = 0 ms (when
we have no extra information) and,,, = 2000 ms> At =
8 ms with the same peak amplitude The upper bound dR
is 100. The reconstruction program does not Ns&om Eq.
[1a] as input.
i.e., smoothed Heaviside-like functions. In Table 1 we insert the maximum of the resolution factor
The noise contribution of each data point is a GaussidR,. from Eq. [13]) calculated at the various SNR values and

distribution with a mean equal to 0 and a standard deviatidor three thresholds 03, 4, for R = Ry 82 = 82 max

where

t/r

f(t) =

et/r + eftll‘i
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| population B population

53 =
0.2

0.1

0 500 1000 u%soo T(ms)

FIG. 1. The convolution ofT, distribution with a smoothed dirac-delta- FIG. 3. The convolution ofT, distribution with a smoothed dirac-delta-
like function, with known (open circles) and reconstructed distribution (soliike function, with known (open circles) and reconstructed distribution (solid
line) in the case oN = 4, R = 3. line) in the case oN = 4, R = 9.

In Figs. 1, 2, and 3 are represented the convolutioTof  Despite the localization not being so clear, these function:
distribution with a smoothed dirac-delta-like function (Egare more stable to experimental fluctuations.
[14b]), with known (open circles) and reconstructed distribu-
tion (solid line) atR = 3, 5, and 9, for the signal obtained by
the sum of equally populated four exponentials. VI. EXPERIMENTAL SIMULATION
We can evaluate (from Table 1) the confidence degree of the

numerical result, which is similar to a low-resolution NMR The NMR measurements were performed with a pulsec
experiment. 'H NMR Aremi-78 spectrometer (manufactured by the In
It is possible also to use another function, the “staircasgfiiyte of Physics and Nuclear Engineering, Bucharest
function-type Eq. [13a] for the convolution af, distributions Magurele, Romania) at a frequency of 25 MHz. The tem-
with a smoothed Heaviside-like function, with known a”‘i‘)erature was controlled up to a precision 80.2°C by
reconstructed distribution. airflow over an electrical resistance, using the variable tem
perature unit attached to the spectrometer. The temperatu
in the sample was measured with a thermocouple connecte
population o | to a microprocessor thermometer. All NMR measurements
: were carried out at 25 0.2°C.
For T, estimations, we used a series of standard Carr-
Purcell-Meiboom-Gill (CPMG) sequenceks) with variable
‘ 90°-180° interpulse delays (= 0.10-12 ms, adapted to be
; distinct among samples), 1024 points in common, 10 scan:
/\ /\ ; and a repetition delay (RD) of 10 s. These parameters allow fo
...... \// a good characterization of the slow relaxing component. The

0.3

: CPMG T, decay was measured by sampling the height of the
o . echoes.
: For experimental simulation we have used different solu-
tions of extinctor substance for water protons MnCl

We used two different concentrations and twice-distilled

- water. First, we measured the relaxation tifig for every

0 590 1600 1300 T(ms) sample using our many-exponential fitting program and vali-
FIG. 2. The convolution ofT, distribution with a smoothed dirac-delta- dated these by another nonlinear regression program based

like function, with known (open circles) and reconstructed distribution (soIiHﬁe Marquardt algorithmi). AS eXpeCt?d- we have obtained
line) in the case oN = 4, R = 5. in every case one exponential relaxation centered at 40, 40i

0.1
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popiiiation | A and store these values pf. (CONTIN with regularization
A f ; and positivity condition imposed can be used.)
0.5 : 2'. Repeat step 2 for various measurements performed ur
0 \ der the same phsyical conditions.

. B 3. Select some smooth functiorf§t) (e.g., Eq. [13])

: _ ‘ and compute forT, (step 1) andp, (step 2-2) the
e P graph E(T), T) of the functionF(T) (Ty, < T = Tia)
/ \ j ; given by

\ : | C .
. I\ F(T) = 2 pa 1T = To).

\N* : E /\ 4. Study the error propagation from various signals (stgp 2
0 504 1600 1500 J000 \ T(ms) to the graph ofF(T). In the case of poor reproducibility,

FIG. 4. (A, B, and C) The reconstructed single convolution centered at49,ecrease the resolution facté, or select a new, much

400, and 2100 ms, respectively: (D) the reconstructed convolution from tREnoother functiorf.
sum of three exponentials. All the convolutions are drawR at 15.

VIII. CONCLUSIONS

and 2100 ms (see Figs. 4A, 4B, and 4C, respectively). Next, we

analyzed the combinations of these three samples. An equalVe proved that the straightforward functional analytical
quantity of each solution was enclosed in the capillary tubegpproach to the NMR signal treatment could provide a clea
and we analyzed them together. Thus, we obtained an expsstting of the questions about the possibility of obtaining
mental signal composed of the sum of three exponentials. Tinemerically stable results of, distribution. Despite the fact
experimental signal has an SNR near to 50 dB. This signal wiast it is impossible to exactly localize separated exponentia
fitted by our program. As we expected, we obtained threerms, the mean value of the distribution functions can be
separate distributions near to the specific distributions detegconstructed and generates, as a byproduct, a partial localiz
mined in stage one (centered at 42.5, 386, and 2105 ms) (§6R of the T, terms, even in the presence of noise. Our
Flg 4D) If we admit that the three distributions from the ﬁl’Sﬁumerica| examp|es Suggest that a partia| localization of a
stage are reference signals for the distribution obtained in staggst 10% is always possible, even under the experiment:
two, we could calculat®., for different 5, (see Table 2).  conditions of SNR~ 50-70 dB. In terms of functional anal-
ysis, this kind of reconstruction of mean values is termed a:
“weak convergence.”

The objectives of future investigations are twofold: math-
ematical and experimental. From the mathematical point o
view, we must solve the problem stated at the end of
Appendix E, in order to speed up the computations related t
variable £, = exp(—At/T,), whereT,, < T, = Twae SUCh the error estimation. From the experimental point of view, it

that the discretization errog, from Appendix C should be is important to work out the standardization of the functions

much lower than the experimental error (see the recipe at eS¢ mean values we compute, which depends on th
of Appendix C). physical, chemical, and biological origins of the samples

VII. PRACTICAL RECIPE

0. Normalize the signad, = s(kAt), tos(0) = s, = 1 and
retain old value ofs(0) for further application.
1. Select a discretization of timEg, or X, = exp(—At/T,)

2. For one or, better, several signal sequences perform thgestigated.
least-square fit: i§, = s(kAt) is the signal, fingp, = 0 which
gives, in the above discretized approximation, the best fit,

TABLE 2
N N Numerical Results for Experimental Simulation
Sc= 2 paeXp(—KAUT,) = X p.£X, SNR (dB) 50
a=1 a=1
N Rinax (for 8, = 0.01 = 8,na) 2
_ vy _ Rinax (for 8, = 0.05 = 8,0 6
k=0,M, or k=1,M and > p,=1, R (for 6= 01 = 5,3 1=

a=1
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APPENDIX A Then
Direct Calculation of Some Mean Values without 1 1 )
Reconstruction of the T, Distribution Function o2 D:‘Ef _ < > >
To T+To \t+To/ )/,
The correctness for the choice of the cutoff parameter in Eq. ) )
[3] may be verified by the Hder inequalities _ < 1 > - < 1 > (Ad]
T+ T, . T+ Tof
n n l/pi n
i l . . . .
f 1 fido| =] (f f?'do) . o =1,1=p, Then o, provides an error estimation of the displacedTy
i=1 i=1 i=1 " harmonic mear,.
which give, if B = 2L, B, APPENDIX B
n n g Upper Bound of the Probability That the Experimental
(T <[] (TBPyYP p=1, > o =1. [A1] Signal Should Be Mathematically Correct

=t Consider the less restrictive cabg, = 0 andT,,,, = «. Let

S, ...,Su, a&random sequence with = 1, 0=s =1,k =
We remark that valueT ), a« > 0, are more sensitive to largel, M, be uncorrelated and uniformly distributed. Denotéythe
relaxation times. Nevertheless, we can roughly estimate thebability that this sequence be a true, idealized NMR signal, i.e
contribution of lower relaxation times in a stable way too. Weould be written like Eq. [1b]. We translate a result &f)(in

obtain (using Eq. [2]) NMR terminology. According toX7) this probabilityD,, is
w Tmax T'To M ((k_l)l)z
—t/To — .
f ety f o) T ou=T1 |G | B1)
0 Tmin k=1 ’
, | ™ do(7)
=To— T T+ T, whereM is the number of equidistant samples.
Trmin In mathematical terms, this is the probability thad,,(
1 S;, -..,Su) € Ky (ors, = 1 and obeysR)). Then, if instead
=T,— T§<T T > . of ideal signals ¢,, . .., sy) we should have one distributed
o7 according to probability distribution functiof(s,, .. ., Sw),
the probability of obtaining a physically admissible (obeying
Thus restrictionR) signal would be
< : > el 1 1 il d P f d d D B2
= = — J 0 — -
T+ Tol TE T, T, T, e "'os(t)dt M (sy, .. .,swds, ...,dsy, =Dy, [B2]
Tmin 0 Km
1 1 (A = _ .
=_|1-— e UTog(t)dt |. [A2] wheref is the maximal value of(s,, . . . ,sy). For a Gaussian
To To), distribution, with dispersiorr,

Differentiating Eq. [3] withT,, we can compute(1/(t + f= 1( 2oy 83
T,))?). and the dispersion of 1#(+ To):

Taking an overoptimistic value, = 10°° from Egs. [B1],

1 1 1 (*/t [B2], and [B3] we find that for, e.gM = 6, P, < 2 X 10 %,
<(7+T0)2> =12 + TSJ <To - 2) e "s(t)dt. [A3] and is “cosmologically small” for higheVl. If T, of Ty are
T 0 known, this probability will be smaller.
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APPENDIX C or
The Discretization Error Estimated AW = p* gk 4 (1 — A9 EK,  — (W E + (1 — A9,k
Readers interested in applications can read only the final [C2b]

recipe, without the forthcoming proof. By definition, tKeg, set

can be viewed as the smalleset convex bodyRih which We notice that\*
f

contains the curv&: [a, b] —— R™, given byx — { x'}, ; C LTkt

k = 1, M. Consequently, we can approximate the culve A ER (1= Ar)ER, = ( Ear1~ &a ) [C3]
by a general polygonal curvE", whose vertices lie off, ‘ ot K(€av1— &)

andK,, by K\ C K, whereKj}, is the convex hull of the

is given by

points’ polygonal linel'™™. or
We denote by, € [a, b] the N points. We also denote s,
a = 1, N, the vectors fronR", s, = {s,,}, with s, = &. gk — gk kD
ThenK} is the convex hull of the pointss}, a« = 1, N, A* = {(k(g—g)) - 5+1} /(éi — &840,
Knw C Ky and foré, equally spaced, ot S
[C4]
U K=Ky ande, can be computed exactly.
N=Mo We chooseé, = exp(—At/T,), where T, are uniformly

distributed betweef ., andT ., and forN = 350,M = 230,
Then we can comput&, (= ) (the discretization error): ¢ is less than 10'.

The recipe is to select a sequence of discretization p@ints
8y = inf dist({s}, {si}), (Toin = T = Tra), COMputeé, = exp(—At/T,), computex*
(sdek! from Eq. [C4], computeA® from Eq. [C2b], and from Eq.
[C1] compute the discretization errey.

and we have fos, € K},
APPENDIX D

N N
Sc= 2 Putl pa=0,5= 2 p,=1. , _
“ a=1 ° a1 We use the fact that, by the Weierstrass theorem, a contir
uous function can be approximated by polynomials. Consider

The approximation error can be bounded readily. We denots duence of noiseless signal:

Proof of Stability in the Noiseless Case

_ (k) Tmax
I A (1] 5= s(ka) = f exp(—KAUT)dp(T)
Tmlﬂ
whereA ¥ is the maximal error in approximating o[ &..:] b
the functionx® by the linear function = [ x‘do(x); k=0, M.
) it L .
o(X) = &5+ i & (x— &), If s, obeys R), it is well known, from the classical momentum
a+l et

problem, that for finiteM there are an infinity of distributions

o . dp(T) or do(x). Moreover, there are some representations
which is a segment of the polygonal cur’&, the approxima

tions of I joining two neighbor vertices.
The error induced by discretization is less than
A% can be computed easily:

C C

s = >, niexp(—kAt/T) = >, niéX

i=1 i=1

A = sup(AEL+ (1= Méis — (W& + (1= MDY with 2C > M + 1, where some off, may be placed
Ao everywhere on T, Tmad OF & On [a, b] (canonical repre
[C2a] sentation). Nevertheless, #(7) (Town = T = T O f(X)
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(a = x = b) are continuous functions, then for sufficiently b b
largeM the integrals (mean valueB)f, o) = [ f(x)do(X), [AI(f, 0)| = eM(j do(x) + J do"(X))
or equivalentlyd(e, p) = [1™ @(7)dp(7), have only a slight a a
dependence odo(x). This happens because if sorig are

“misplaced,” the corresponding will be small (e.g., bounded
by R. Nevanlinna “maximal mass” functior?)j. Because of

= €y-2s, — 0 (by Eq.[D2]).

the equivalence of momentum and NMR reconstruction prob- APPENDIX E
lem, we will focus onl(f, o). The precise statement is
Lets, = f2 x*do(x) = 2 x*do’(x), k = 1, M be two Stability in Experimental Situations
distinct reconstructions, and’(f, o) = 2 f(x)da’ (X). We denote byo'y = X, (As))® the estimated mean-
gsflsﬂx);sogontmuous ong, b] thenl(f, o) — I'(f, o) >0 square error and let,, = o}, be an error bound. We will give

a definition of experimental stability by requiring that if the

Proof. By Weierstrass theorem, there exists polynomialgymper of datal increases and the mean-square experimentz
Pu(x) that uniformly approximaté(x): error boundr,, decreases to 0, then the reconstruction error o

I(f) should be small.

f(x) — Pu(x) = Ry(x) = error [D1] , ,
DerinimioN. A reconstruction method of(f, o) is oy-
experimentally stabléwith lim,,_.. o, = 0) if the reconstruc
and tion error (Al),, — O.
Def Then we have the following:
sup|Ruy(X)| = ey—0 as M — . [D2]
selab) Tueorem. Let f € C'[a, b] and Py(x) be a polynomial of

M — 1 degree which realizes the infimum
Write Py(x) = S, pex"; thus

b M
b b M inf J (f/(X) — Py(x))2dx, Py(x) = > bx*™.
j Pu(x)da(x) = J Pu(X)do’ (X) = D, syp.  [D3] Pu(%) k=1
a a k=0
_ We denote that = (S, (b/k)?)"2
Thus, the errofAl(f, o)| is bounded by If oy + Cy — 0, then the reconstruction is,-experimen
tally stable.
b b Proof. Let f(x) = Ruy(x) + 2, pxs, I(f, o) = [2
|AL(T, 0)] = f(x)do(x) — [ f(x)do’(x) f(x)do(x), and assuming that in Eqgs. [11] and [12]x) is
a a continuously differentiable, integrating by parts we obtain,
. from Eq. [12]
= J (Pu(X) + Ru(x))do(x)
a M
b I(f, 0) = X pisc + Ru(b)a(b) — Ry(a)o(a)
—f (Pu(X) + Ru(x))do’ (X) o
a b
) ) —f Ru(x)o(x)dx. [E1]
= ‘j Ryu(x)do(X) —f Ryu(x)do’ (X) a
. ) We can chooser(a) = 0 andRy(b) = 0. Then|o(x)| = 1
SJ IRu(X)|dor(x) + J IRu(X)|do” (). (so = 1). The error is bounded by

M

b
We have successively used Egs. [D1] and [D2] and the factthat  |Al(f, o) = X [pdlAsd + f IRu(X)[o(x)dx, [E2]
do(x), do’(x) = 0, and the next using Eq. [D3]: k=1 a
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and by the Schwartz inequality

STEINBRECHER ET AL.

a simple algebraic problem for finifé. The investigation of
the whole class of functiori§x), whene*(M, a, b, oy) — 0
asM — o s still an open problem in functional analysis.

[AI(f, o) = (2 PR YA AsH?+ (b — &) V2

k=1 k=1
b 1/2 1
X f (Ru(x)) *(o(x)) *dx [E3]
! 2
If we definep, - k = by, then B
M b 2\ 1/2
Al o= 2| 1] | comt b-a) 4
k=1
5
b M 1/2
X J (f'(x) — > bx*12dx [E4]
a k=1

Thus|Al(f, o) = Cy - oy + V(b — a) - infy, [2 (f'(X) —
Pu(x))?dx = Cy * oy + V(b — a) - 8. But becausd’ €
C'[a, b], 8,, — 0 whenM — o, which completes the proof.
We remark that this is only a sufficient condition. To obtain
the best bound oAl ( f, o) from Eq. [E4], using the inequality 8

a+ b= V2@ + b’ we obtain

Al(f, 0)) 2 M by 2
(F27) =2 (3]
k=1 9
M 10.
+(b—a)-[f(x)— X bx*?*% [E5] 1
k=1 :
12.
Thus QAI(f, 0))*> = 2 €(M, a, b, o), where
13.
M b 2
. k
€M, a, b, o) = inf| o, - >, w| Fb-a "
b k=1
. " 15.
xf (f'(x) — D, bx*1)2dx|.
a k=1

The computation ofe’(M, a, b, o) from Eq. [E6] is a 17

standard Hilbert space optimization problem, fiér— <« and
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